
Boomerang: Exploiting the Semantic
Gap in Trusted Execution Environments

Aravind Machiry, Eric Gustafson, Chad Spensky, Chris Salls,
Nick Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe,

Christopher Kruegel, and Giovanni Vigna

x86 Privilege levels

Main Memory

x86 Privilege levels

Main Memory

ARM TrustZone
NS Bit

● 0 - Secure or Trusted
● 1 - Non-secure or Non-trusted or Untrusted

Picture reused from arm.com

Trusted Execution Environment (TEE)

● Hardware-isolated execution environments (e.g., ARM TrustZone)

○ Non-secure world
■ Untrusted OS and untrusted applications (UAs) (e.g., Android and apps)

○ Secure world
■ Higher privilege, can access everything
■ Trusted OS and trusted applications (TAs).

Normal World running Untrusted OS (e.g., Android)

User Space

Secure Memory

Kernel Space

User and Kernel

Kernel

Secure World running Trusted OS (e.g., QSEE)

Non-secure Memory

Kernel Space

User Space

User and Kernel

User and Kernel

Kernel

Secure World running Trusted OS (e.g., QSEE)

Non-secure Memory

Kernel Space

User Space

User and Kernel

User and Kernel

Kernel

Semantic
Gap

Expectation

+ =

Reality

+ =

Untrusted OS ↔ Trusted OS
● Untrusted applications (UAs) request trusted applications (TAs) to perform

privileged tasks.

● TAs should verify the request and perform it only if the request is valid.
○ Example: Decrypting a memory region:

■ TA should check if the requested memory region belongs to untrusted OS before
decrypting it.

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Trusted
Application (TA)

Untrusted OS
Trusted OS

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Trusted
Application (TA)

Untrusted OS
Trusted OS

?

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS

Driver Interface (ioctl)
Trusted OS

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS TE
E

In
te

rf
ac

eDriver Interface (ioctl)
Trusted OS

SMC

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS TE
E

In
te

rf
ac

eDriver Interface (ioctl)
Trusted OS

Untrusted OS ↔ Trusted OS
Non-Secure World Secure World

Supervisor

Userspace

Untrusted
Application (UA)

Library

Trusted
Application (TA)

Untrusted OS TE
E

In
te

rf
ac

eDriver Interface (ioctl)
Trusted OS

PTRSAN
Non-Secure World Secure World

Supervisor
Userspace

Untrusted Application (UA) Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

Normal

Unknown

Translated

Handling untrusted pointers in trusted OS
● Check if the physical address indicated by the pointer belongs to the

non-secure memory.
○ Protect trusted OS against untrusted OS

● Trusted OS (or TA) has no information about the UA which raised the request.

Handling untrusted pointers in trusted OS
● Check if the physical address indicated by the pointer belongs to the

non-secure memory.
○ Protect trusted OS against untrusted OS

● Trusted OS (or TA) has no information about the UA which raised the request.

Semantic Gap

Untrusted Application (UA)

Bypassing Sanitization
Non-Secure World Secure World

Supervisor
Userspace

Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

Normal

Unknown

Translated

Untrusted Application (UA)

Bypassing Sanitization
Non-Secure World Secure World

Supervisor
Userspace

Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

Normal

Unknown

Translated

P
T
R

P
T
R

Malicious

Untrusted Application (UA)

Boomerang flaw
Non-Secure World Secure World

Supervisor
Userspace

Trusted Application (TA)

Untrusted OS Trusted OS

P
T
R

P
T
R

P
T
R

PTRSAN
P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

P
T
R

Normal

Unknown

Translated

P
T
R

P
T
R

Malicious

Boomerang flaw
● Real world PTRSAN implementations are complex.

● Can we bypass the validation and make PTRSAN translate arbitrary
physical address?

YES!!
● We can bypass PTRSAN in all of the popular TEE implementations.

TEE Name Vendor Impact Bug Details

OP-TEE Linaro Write to other
application’s memory Github issues 13, 14

Sierra TEE Sierraware Arbitrary write No response from
vendor

QSEE Qualcomm Arbitrary write CVE-2016-5349

TrustedCore Huawei Arbitrary write CVE-2016-8762

Trustonic As used by Samsung Arbitrary write PZ-962*

*concurrently found by Google Project Zero (laginimaineb)

https://github.com/linaro-swg/linux/issues/13/
https://github.com/linaro-swg/linux/issues/14/
https://bugs.chromium.org/p/project-zero/issues/detail?id=962
https://bugs.chromium.org/p/project-zero/issues/list?q=label:Finder-laginimaineb

How to exploit Boomerang flaws?

Automatic detection of vulnerable TAs
● Goal: Find TAs which accepts pointers

● Static analysis of the TA binary:
○ Recover CFG of the TA
○ Paths from the entry point to potential sinks
○ Output the trace of Basic Block addresses

Results

TEE Name Number of TAs Vulnerable TAs

QSEE 3 3

TrustedCore 10 6

✓ Arbitrary kernel memory read on Qualcomm phones.

✓ Kernel code execution on Huawei P8 and P9.

✓ Demonstrated at GeekPwn.

✓ Geekpwn Grand Prize ($$$)

https://www.youtube.com/watch?v=XjbGTZrg9DA

How to prevent Boomerang attacks?

Root Cause
● Semantic Gap: Inability of the TA (or TEE) to verify whether the requested UA

has access to the requested memory

● Should have a mechanism for the TA (or TEE) to verify or bridge the semantic
gap.

Cooperative Semantic Reconstruction (CSR)
● Novel Defense proposed by us.

● Provides a channel for Trusted OS to query Untrusted OS for validation.

Cooperative Semantic Reconstruction (CSR)

Normal flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Cooperative Semantic Reconstruction (CSR)

Normal flow

Verification flow

Implementation
● Open Platform-Trusted Execution Environment (OP-TEE)

● Easy to use
● Helpful community
● Has DSMR already implemented

● HiKey Development board (Lemaker Version)

Evaluation: CSR vs DSMR
● Microbenchmarks

Defense Name Overhead
Component Overhead (𝜇s) Total Overhead (𝜇s)

CSR

Untrusted OS
verification 21.909

26.891

Mapping in trusted
OS 4.982

DSMR

Shared memory
allocation 13.795

21.777Shared memory
release 7.982

Evaluation: CSR vs DSMR
● XTEST

● Default OP-TEE Test suite.

● 63 Tests covering sanity, functionality, benchmarking and compliance.

Evaluation: CSR vs DSMR

Tests Category
Overhead (CSR - DSMR) averaged over 30 runs

Avg Time(%) Avg Time (ms)

Basic Functionality -0.58% -7.168

Trusted-Untrusted
Communication 4.45% 0.510

Crypto Operations -1.72% -901.548

Secure File Storage 0.03% 0.694

Average over All
Categories -0.0344% -189.919 ms

CSR faster than DSMR DSMR faster than CSR

Evaluation: CSR vs DSMR
● DSMR is slow in practice:

● Synchronized access for shared memory allocation.
● Additional copying.

● CSR can be slow for simple requests.
● Setup of tracking structures.

Conclusion
✓ Boomerang: New class of bugs

✓ Automated attack vector detection

✓ Novel, practical, and efficient solution against boomerang: Cooperative semantic
reconstruction (CSR)

✓ Detection, exploits, and defenses available at github

https://github.com/ucsb-seclab/boomerang

?

Backup

Automatic detection of vulnerable TAs
● Recover CFG of the TA

● Paths from the entry point to potential sinks

● Output the trace of Basic Block addresses

● Implemented using angr

Cooperative Semantic Reconstruction (CSR)
● Untrusted OS sends application id (e.g., pid) along with the request to Trusted

OS.

● Raw pointers with application virtual address (VA) are passed directly to
Trusted OS.

● TA or TEE consult untrusted OS to get the physical address corresponding to
the VA of the pointer using application id (i.e., pid).

